
pmid: 17005216
Arabidopsis thaliana RAC/ROP GTPases constitute a plant specific Rho GTPase family in the RAS superfamily, which has been implicated in numerous pivotal signalling cascades in plants. Research has shown that plants in some cases have evolved different modes of regulating Rho GTPase activity as compared to the equivalent systems in animals and yeast. In order to gain structural insight into plant signaling at the molecular level, we have determined the first crystal structure of a RAC-like GTPase belonging to the RAS superfamily from the plant kingdom. The structure of AtRAC7/ROP9 bound to GDP was solved at a resolution of 1.78 A. We have found that the structure of plant Rho GTPases is based upon a conserved G-domain architecture, but structural differences were found concerning the insert region and switch II region of the protein.
Models, Molecular, rho GTP-Binding Proteins, Binding Sites, Arabidopsis Proteins, Protein Conformation, Molecular Sequence Data, Arabidopsis, Amino Acid Sequence, Crystallography, X-Ray, Monomeric GTP-Binding Proteins
Models, Molecular, rho GTP-Binding Proteins, Binding Sites, Arabidopsis Proteins, Protein Conformation, Molecular Sequence Data, Arabidopsis, Amino Acid Sequence, Crystallography, X-Ray, Monomeric GTP-Binding Proteins
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 24 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
