Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Intelligencearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Intelligence
Article . 2012 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effective local evolutionary searches distributed on an island model solving bi-objective optimization problems

Authors: Cheshmehgaz, Hossein Rajabalipour; Ishak Desa, Mohammad; Wibowo, Antoni;

Effective local evolutionary searches distributed on an island model solving bi-objective optimization problems

Abstract

Using multiple local evolutionary searches, instead of single and overall search, has been an effective technique to solve multi-objective optimization problems (MOPs). With this technique, many parallel and distributed multi-objective evolutionary algorithms (dMOEAs) on different island models have been proposed to search for optimal solutions, efficiently and effectively. These algorithms often use local MOEAs on their islands in which each local search is considered to find a part of optimal solutions. The islands (and the local MOEAs), however, need to communicate to each other to preclude the possibility of converging to local optimal solutions. The existing dMOEAs rely on the central and iterative process of subdividing a large-scale population into multiple subpopulations; and it negatively affects the dMOEAs performance. In this paper, a new version of dMOEA with new local MOEAs and migration strategy is proposed. The respective objective space is first subdivided into the predefined number of polar-based regions assigned to the local MOEAs to be explored and exploited. In addition, the central and iterative process is eliminated using a new proposed migration strategy. The algorithms are tested on the standard bi-objective optimization test cases of ZDTs, and the result shows that these new dMOEAs outperform the existing distributed and parallel MOEAs in most cases.

Keywords

QA75 Electronic computers. Computer science, 006

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!