Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Intercalation behavior of poly(ethylene glycol) in organically modified montmorillonite

Authors: Shipeng Zhu; Hongmei Peng; Jinyao Chen; Huilin Li; Ya Cao; Yunhua Yang; Zhihai Feng;

Intercalation behavior of poly(ethylene glycol) in organically modified montmorillonite

Abstract

Abstract In this paper, two kinds of organically modified montmorillonite (OMMT) were prepared using alkylammonium surfactants with different alkyl chain numbers. XRD results showed the interlayer spacing of OMMT increased with low concentration surfactants. With further increasing the surfactants concentration, the interlayer spacing of OMMT was unchanged. Meanwhile, FTIR was used to characterize the local environments of surfactants in the interlayer space of OMMT. The results suggested that the double chain surfactant D-18 preferred to adopt highly ordered conformation compared with single chain surfactant S-18 in interlayer space of OMMT. It indicated that the surface property of the OMMT is affected by the concentration and configuration of the intercalated surfactants. Moreover, the effect of the OMMT type, or more particularly the chemical nature of the organic modifier in the interlayer spacing and the poly(ethylene glycol) (PEG) concentration onintercalation behavior of PEG chains in OMMT were investigated with XRD and DSC.The results indicated that PEG chains could not intercalate into Na-MMT when the surfactants were saturated in interlayer space of Na-MMT. PEG chains could intercalate into the interlayer space of SM when the S-18 concentration was lower than 2.00CEC, implying that the low surfactant concentration modified SM provided a better environment (presumably through the balanced hydrophobic and hydrophilic surfaces) for the PEG intercalation as well. However, PEG did not intercalate into the interlayer space of DM when the D-18 concentration was higher than 1.00CEC. It could be attributed to the hydrophobic double alkyl chains of DM increased with D-18. The increased hydrophobic properties in the interlayer space of 1.50DM hybrids can prevent the intercalation of hydrophilic PEG.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!