Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Conference object
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Schema-aware Reference as Prompt Improves Data-Efficient Knowledge Graph Construction

Authors: Yunzhi Yao; Shengyu Mao; Ningyu Zhang 0001; Xiang Chen 0016; Shumin Deng; Xi Chen 0003; Huajun Chen;

Schema-aware Reference as Prompt Improves Data-Efficient Knowledge Graph Construction

Abstract

With the development of pre-trained language models, many prompt-based approaches to data-efficient knowledge graph construction have been proposed and achieved impressive performance. However, existing prompt-based learning methods for knowledge graph construction are still susceptible to several potential limitations: (i) semantic gap between natural language and output structured knowledge with pre-defined schema, which means model cannot fully exploit semantic knowledge with the constrained templates; (ii) representation learning with locally individual instances limits the performance given the insufficient features, which are unable to unleash the potential analogical capability of pre-trained language models. Motivated by these observations, we propose a retrieval-augmented approach, which retrieves schema-aware Reference As Prompt (RAP), for data-efficient knowledge graph construction. It can dynamically leverage schema and knowledge inherited from human-annotated and weak-supervised data as a prompt for each sample, which is model-agnostic and can be plugged into widespread existing approaches. Experimental results demonstrate that previous methods integrated with RAP can achieve impressive performance gains in low-resource settings on five datasets of relational triple extraction and event extraction for knowledge graph construction. Code is available in https://github.com/zjunlp/RAP.

Accepted by SIGIR 2023

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Computation and Language, Artificial Intelligence (cs.AI), Computer Science - Databases, Computer Science - Artificial Intelligence, Databases (cs.DB), Computation and Language (cs.CL), Information Retrieval (cs.IR), Computer Science - Information Retrieval, Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Top 10%
Top 10%
Green