
arXiv: 2210.10709
With the development of pre-trained language models, many prompt-based approaches to data-efficient knowledge graph construction have been proposed and achieved impressive performance. However, existing prompt-based learning methods for knowledge graph construction are still susceptible to several potential limitations: (i) semantic gap between natural language and output structured knowledge with pre-defined schema, which means model cannot fully exploit semantic knowledge with the constrained templates; (ii) representation learning with locally individual instances limits the performance given the insufficient features, which are unable to unleash the potential analogical capability of pre-trained language models. Motivated by these observations, we propose a retrieval-augmented approach, which retrieves schema-aware Reference As Prompt (RAP), for data-efficient knowledge graph construction. It can dynamically leverage schema and knowledge inherited from human-annotated and weak-supervised data as a prompt for each sample, which is model-agnostic and can be plugged into widespread existing approaches. Experimental results demonstrate that previous methods integrated with RAP can achieve impressive performance gains in low-resource settings on five datasets of relational triple extraction and event extraction for knowledge graph construction. Code is available in https://github.com/zjunlp/RAP.
Accepted by SIGIR 2023
FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Computation and Language, Artificial Intelligence (cs.AI), Computer Science - Databases, Computer Science - Artificial Intelligence, Databases (cs.DB), Computation and Language (cs.CL), Information Retrieval (cs.IR), Computer Science - Information Retrieval, Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Computation and Language, Artificial Intelligence (cs.AI), Computer Science - Databases, Computer Science - Artificial Intelligence, Databases (cs.DB), Computation and Language (cs.CL), Information Retrieval (cs.IR), Computer Science - Information Retrieval, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
