Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Virchows Archivarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Virchows Archiv
Article . 2010 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Virchows Archiv
Article . 2010
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Integrin-linked kinase (ILK) in pulmonary fibrosis

Authors: Panagiotis, Kavvadas; Katerina P, Kypreou; Evdokia, Protopapadakis; Evangelia, Prodromidi; Paschalis, Sideras; Aristidis S, Charonis;

Integrin-linked kinase (ILK) in pulmonary fibrosis

Abstract

Pulmonary fibrosis is a common feature of a large group of lung diseases. The molecular mechanisms underlying pulmonary fibrosis and the key macromolecules involved are not fully understood yet. In an effort to better understand aspects of pulmonary fibrosis, the established bleomycin injection model in mice was used and the focus of the present study was on integrin-linked kinase (ILK) expression. ILK is an intracellular protein involved in the regulation of integrin-mediated processes. In fibrosis, ILK has been examined in the kidney and in the liver where it mediates epithelial to mesenchymal transition (EMT) and hepatic stellate cell activation, respectively. However, information on ILK's involvement in lung fibrosis is missing. In order to examine ILK's role in pulmonary fibrosis, we used both an in vivo and an in vitro approach. In vivo, the bleomycin model was used in order to examine ILK's expression and localization in the fibrotic lung. In vitro, transforming growth factor-β1 was used to induce fibrotic characteristics and EMT in alveolar epithelial cells. ILK's role in alveolar EMT was studied by siRNA. Our results demonstrate that in the animal model used, ILK exhibits a decrease in expression at early stages of the fibrotic process and that a specific subset of fibroblasts is expressing ILK. The in vitro experiments suggested that ILK is not directly involved in E-cadherin downregulation and initiation of EMT (as is the case in renal fibrosis) but is involved in upregulation of vimentin. These results suggest that ILK is involved in lung fibrosis in a tissue-specific manner and raise the possibility to use it as a specific therapeutic target for lung fibrosis in the future.

Keywords

Epithelial-Mesenchymal Transition, Pulmonary Fibrosis, Blotting, Western, Fluorescent Antibody Technique, Protein Serine-Threonine Kinases, Immunohistochemistry, Mice, Inbred C57BL, Disease Models, Animal, Mice, Animals, Humans, Female, RNA, Small Interfering, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!