Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Load-balanced shortest-path-based routing with even traffic splitting

Authors: Masashi Honma; Shunichi Tsunoda; Eiji Oki;

Load-balanced shortest-path-based routing with even traffic splitting

Abstract

This paper proposes an even-split Smart-OSPF (S-OSPF) scheme to reduce network congestion more than the conventional non-split S-OSPF and to distribute traffic more easily than the conventional split S-OSPF. In split S-OSPF, source edge nodes distribute traffic unevenly to their neighbor nodes, but the implementation becomes involved to split traffic with different distribution. In non-split S-OSPF, source edge nodes transmit traffic to only one neighbor so that network congestion can be minimized, where non-split S-OSPF distributes traffic more simply than split S-OSPF. In the proposed scheme, source edge nodes transmit traffic evenly to selected neighbor nodes to minimize network congestion. The optimization problem to select a suitable set of neighbor nodes for even traffic distribution raised by the proposed scheme is formulated as an Integer Linear Programming (ILP) problem. The difficulty of solving the ILP problem in a practical time leads us to introduce a heuristic algorithm. The performances of our developed heuristic algorithm are evaluated via simulation developed in terms of network size. Numerical results show that even-split S-OSPF offers better routing performance than non-split S-OSPF for small-size networks and matches that of split S-OSPF for large-size networks.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!