Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cell Cyclearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Cycle
Article
Data sources: UnpayWall
Cell Cycle
Article . 2011 . Peer-reviewed
Data sources: Crossref
Cell Cycle
Article . 2011
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dynamic and selective DNA-binding activity of Smc5, a core component of the Smc5-Smc6 complex

Authors: Marc-André, Roy; Nadeem, Siddiqui; Damien, D'Amours;

Dynamic and selective DNA-binding activity of Smc5, a core component of the Smc5-Smc6 complex

Abstract

Members of the structural maintenance of chromosome (SMC) family of proteins are essential regulators of genomic stability. In particular, the conserved Smc5-6 complex is required for efficient DNA repair, checkpoint signaling, and DNA replication in all eukaryotes. Despite these important functions, the actual nature of the DNA substrates recognized by the Smc5-6 complex in chromosomes is currently unknown. Furthermore, how the core SMC components of the Smc5-6 complex use their ATPase-driven mechanochemical activities to act on chromosomes is not understood. Here, we address these issues by purifying and defining the DNA-binding activity of Smc5. We show that Smc5 binds strongly and specifically to single-stranded DNA (ssDNA). Remarkably, this DNA-binding activity is independent of Smc6 and is observed with the monomeric form of Smc5. We further show that Smc5 ATPase activity is essential for its functions in vivo and that ATP regulates the association of Smc5 with its substrates in vitro. Finally, we demonstrate that Smc5 is able to bind efficiently to oligonucleotides consistent in size with ssDNA intermediates produced during DNA replication and repair. Collectively, our data on the DNA-binding activities of Smc5 provide a compelling molecular basis for the role of the Smc5-6 complex in the DNA damage response.

Related Organizations
Keywords

Adenosine Triphosphatases, Saccharomyces cerevisiae Proteins, DNA Repair, Cell Cycle, DNA, Single-Stranded, Cell Cycle Proteins, Saccharomyces cerevisiae, Chromosomes, DNA-Binding Proteins, Adenosine Triphosphate, DNA, Fungal, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
bronze