
ABSTRACT It is generally assumed that human immunodeficiency virus type 1 (HIV-1) uses exclusively the cellular \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(tRNA_{3}^{Lys}\) \end{document} molecule as a primer for reverse transcription. We demonstrate that HIV-1 uses not only \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(tRNA_{3}^{Lys}\) \end{document} but also an alternative tRNA primer. This tRNA was termed \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(tRNA_{5}^{Lys}\) \end{document} , and the near completion of the human genome project has allowed the identification of four \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(tRNA_{5}^{Lys}\) \end{document} encoding genes. Priming with \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(tRNA_{5}^{Lys}\) \end{document} results in a single nucleotide polymorphism in the viral primer-binding site that is present in multiple natural and laboratory HIV isolates. This sequence variation was recently attributed to APOBEC3G activity. However, our results show that alternative tRNA priming can cause this mutation in the absence of APOBEC3G.
Binding Sites, Base Sequence, Molecular Sequence Data, Proteins, APOBEC-3G Deaminase, Nucleoside Deaminases, Reverse Transcription, Virus Replication, Cell Line, Repressor Proteins, Cytidine Deaminase, Sequence Homology, Nucleic Acid, HIV-1, Humans, Nucleic Acid Conformation, RNA, RNA, Transfer, Lys
Binding Sites, Base Sequence, Molecular Sequence Data, Proteins, APOBEC-3G Deaminase, Nucleoside Deaminases, Reverse Transcription, Virus Replication, Cell Line, Repressor Proteins, Cytidine Deaminase, Sequence Homology, Nucleic Acid, HIV-1, Humans, Nucleic Acid Conformation, RNA, RNA, Transfer, Lys
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
