Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Structural and Kinetic Study of Differences between Human and Escherichia coli Manganese Superoxide Dismutases

Authors: David N. Silverman; Robert McKenna; Diane E. Cabelli; John F. Domsic; Jiayin Zheng;

Structural and Kinetic Study of Differences between Human and Escherichia coli Manganese Superoxide Dismutases

Abstract

Human manganese superoxide dismutase (MnSOD) is characterized by a product inhibition stronger than that observed in bacterial forms of MnSOD. Previous studies show that the conserved, active-site residue Tyr34 mediates product inhibition; however, the protein environment of Tyr34 is different in human and Escherichia coli MnSOD. We have prepared two site-specific mutants of human MnSOD with replacements of Phe66 with Ala and Leu (F66A and F66L, respectively), altering the surroundings of Tyr34. Pulse radiolysis was used to generate superoxide, and measurements of catalysis were taken in single-turnover experiments by observing the visible absorbance of species of MnSOD and under catalytic conditions observing the absorbance of superoxide. The mutation of Phe66 to Leu resulted in a mutant of human MnSOD with weakened product inhibition resembling that of E. coli MnSOD. Moreover, the mechanism of this weakened product inhibition was similar to that in E. coli MnSOD, specifically a decrease in the rate constant for the oxidative addition of superoxide to Mn2+MnSOD leading to the formation of the peroxide-inhibited enzyme. In addition, the crystal structures of both mutants have been determined and compared to those of wild-type human and E. coli MnSOD. The crystallographic data suggest that the solvent structure and its mobility as well as side chain conformations may affect the extent of product inhibition. These data emphasize the role of residue 66 in catalysis and inhibition and provide a structural explanation for differences in catalytic properties between human and certain bacterial forms of MnSOD.

Related Organizations
Keywords

Models, Molecular, Binding Sites, Superoxide Dismutase, Catalysis, Protein Structure, Tertiary, Kinetics, Structural Homology, Protein, Mutation, Escherichia coli, Humans

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!