Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UPCommons. Portal de...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
UPCommons
Doctoral thesis . 2013
License: CC BY NC
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.5821/disser...
Doctoral thesis . 2023 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
TDX (Tesis Doctorals en Xarxa)
Doctoral thesis . 2015
License: CC BY NC
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 6 versions
addClaim

Optimization of field matching in external photon beam radiation therapy

Authors: Hernández Masgrau, Víctor;

Optimization of field matching in external photon beam radiation therapy

Abstract

Radiation therapy is one of the main modalities used for treating cancer patients, together with surgery and chemotherapy. Radiotherapy treatments can be carried out with a great variety of devices, but most treatments are currently delivered with megavoltage x-ray beams produced by medical linear accelerators (linacs). Many treatments are carried out with adjacent radiation fields, which need to be matched. Field matching is a complex problem, which presents several geometrical and dosimetrical challenges. This thesis deals with different aspects related to field matching using medical linacs. The aim is to optimize the process in order to improve the accuracy of this technique in clinical practice. The results of the thesis are included in four publications. Two of them focus on the geometrical problem of field matching; the other two on the optimization in single-isocenter half-beam (SIHB) techniques. In the first group the geometrical problem of matching the adjacent fields is addressed. Fields with different isocenters can be matched by rotating the couch and the collimator and selecting the appropriate field sizes in such a way that their side planes are coincident. For the first time a general analytical solution to this problem, applicable to any field configuration, is presented. The solution provides all the parameters needed to achieve a geometrically exact match. Additionally, the general analytical solution permits to derive simplified expressions for particular treatment techniques. Another important advantage of the general solution is that it allows to draw practical conclusions regarding field matching in clinical practice. In the second group, issues regarding the SIHB technique are investigated. In this technique one of the asymmetric jaws is set to zero in such a way that half-fields with no divergence at the central axis are combined. First, the effect of the field setup on the dosimetry of abutted fields in SIHB techniques is analyzed. Results show that the field setup has an important influence on the dosimetry at the junction. Thus, having a uniform dose distribution for two fields at gantry 0° does not guarantee a uniform distribution for other field arrangements. In addition, junction doses are largely affected by the relative position of the radiation fields involved. Studies aiming to assess or to optimize the homogeneity of the dose distribution at the junction should, therefore, take this effect into account. Second, a new method to calibrate the zero jaw position is proposed that improves its accuracy. This is important because in the SIHB technique the zero position of the jaw is critical for the dose homogeneity at the junction. The presented method allows a more accurate and safer use of half-beam techniques. La radioterapia es una de las principales modalidades para tratamiento del cáncer, junto con la cirugía y la quimioterapia. Los tratamientos de radioterapia se pueden administrar con una gran variedad de equipos, pero en la mayoría de los casos se usan haces de rayos X producidos por aceleradores lineales. En muchos de estos tratamientos se usan haces de radiación adyacentes, que se deben de unir adecuadamente. La unión de campos es un problema complejo, que plantea retos tanto geométricos como dosimétricos. Esta tesis trata de diversos aspectos relacionados con la unión de campos usando aceleradores lineales. El objetivo es optimizar el proceso para mejorar la exactitud de esta técnica en la práctica clínica. Los resultados de esta tesis se incluyen en cuatro publicaciones. Dos de ellas tratan el problema geométrico de la unión de campos; los otros dos tratan la optimización en técnicas de hemicampos con isocéntrico único. En el primer grupo se plantea el problema de unir campos con distintos isocentros mediante rotaciones de la mesa y del colimador y mediante la selección de los tamaños de campo adecuados. De este modo se puede conseguir que los planos definidos por los lados de los haces de radiación sean coincidentes, obteniendo así una unión geométrica exacta. Por primera vez se presenta una solución general analítica a este problema, que es aplicable a cualquier configuración de campos. La solución proporciona todos los parámetros necesarios para obtener una unión de campos geométrica exacta. Adicionalmente, esta solución permite deducir expresiones simplificadas para técnicas de tratamiento particulares. Otra ventaja importante de la solución general es que permite deducir conclusiones prácticas respecto al problema de la unión de campos en la práctica clínica. En el segundo grupo se investigan aspectos relacionados con con la técnica de hemicampos con isocentro único. En esta técnica una de las mandíbulas asimétricas se coloca en su posición 'cero', de modo que se combinan hemicampos sin divergencia en el eje central. En primer lugar se analiza la influencia de la configuración de los campos en la zona de la unión. Los resultados muestran que la disposición de los campos tiene un efecto dosimétrico importante. Por consiguiente, tener una distribución de dosis homogénea para dos campos con el brazo a 0° no garantiza la homogeneidad para otras configuraciones de campos. Adicionalmente, las dosis en la unión son dependientes de la posición relativa de los campos de radiación usados. En consecuencia, aquellos estudios que pretendan estimar u optimizar la homogeneidad de la distribución de dosis deberían tener este efecto en consideración. En segundo lugar se propone un nuevo método para calibrar la posición cero de las mandíbulas que mejora de forma importante su exactitud. Esta calibración es importante porque en la técnica de hemicampos con isocentro único la homogeneidad de la dosis en la unión depende fuertemente de la posición cero de las mandíbulas. El método presentado permite, por tanto, un uso más preciso y seguro de estas técnicas en la práctica clínica.

Country
Spain
Keywords

570, 53, :Energies [Àrees temàtiques de la UPC], Àrees temàtiques de la UPC::Energies, 615, 621, 530

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 80
    download downloads 455
  • 80
    views
    455
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
80
455
Green
hybrid
Related to Research communities
Cancer Research