Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cellular Physiology ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cellular Physiology and Biochemistry
Article . 2018 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cellular Physiology and Biochemistry
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sulforaphane-N-Acetyl-Cysteine Induces Autophagy Through Activation of ERK1/2 in U87MG and U373MG Cells

Authors: Han-Jie Liu; Lei Wang; Lin Kang; Juan Du; Sha Li; Hui-Xian Cui;

Sulforaphane-N-Acetyl-Cysteine Induces Autophagy Through Activation of ERK1/2 in U87MG and U373MG Cells

Abstract

Background/Aims: Sulforaphane-N-acetyl-cysteine (SFN-NAC) is a sulforaphane (SFN) metabolite with a longer half-life and better blood–brain barrier permeability than those of SFN. Previous studies have found that SFN-NAC can act via ERK to destroy microtubules and inhibit cell growth in lung cancer cells. However, the underlying mechanisms are unclear, and it is unknown whether SFN-NAC can inhibit the growth of glioma. Here, we have demonstrated for the first time that SFN-NAC activates autophagy-mediated downregulation of α-tubulin expression via the ERK pathway. Methods: U87MG and U373MG cells, two widely used glioma cell lines, were utilized in this study. Apoptosis assay, western blot analysis, co-immunoprecipitation, immunostaining, and electron microscopy were used to analyze the effect of SFN-NAC on α-tubulin and its interaction with microtube-associated protein 1 light-chain 3 (LC3). Results: SFN-NAC induced cell-cycle arrest in the G2/M phase and dose-dependently induced intracellular ERK activation, autophagy, and α-tubulin downregulation. These SFN-NAC-induced effects were reversed by inhibiting the ERK pathway with its inhibitor PD98059. U87MG and U373MG cells were transfected with LC3 small interfering RNA, and the subsequent inhibition of autophagy reversed the downregulation of α-tubulin by SFN-NAC. Furthermore, co-immunoprecipitation experiments and confocal microscopy confirmed that SFN-NAC promotes the binding of LC3 with α-tubulin in the cytoplasm. Cell viability experiments demonstrate that SFN-NAC inhibits the growth of U87MG and U373MG cell colonies. Conclusion: These findings suggest that SFN-NAC is a novel potential anti-glioma agent.

Related Organizations
Keywords

α-tubulin, Databases, Factual, Physiology, Cell Survival, MAP Kinase Signaling System, Apoptosis, QD415-436, Biochemistry, Isothiocyanates, Tubulin, Cell Line, Tumor, Autophagy, QP1-981, Anticarcinogenic Agents, Humans, RNA, Small Interfering, Proportional Hazards Models, Flavonoids, Mitogen-Activated Protein Kinase 1, Mitogen-Activated Protein Kinase 3, Glioma, Acetylcysteine, G2 Phase Cell Cycle Checkpoints, Sulfoxides, RNA Interference, Sulforaphane, Microtubule-Associated Proteins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%
gold