Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLANT PHYSIOLOGYarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLANT PHYSIOLOGY
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Arabidopsis COP1 and SPA Genes Are Essential for Plant Elongation But Not for Acceleration of Flowering Time in Response to a Low Red Light to Far-Red Light Ratio

Authors: Jan Sahm; Sebastian Rolauffs; Gabriele Fiene; Ute Hoecker; Petra Fackendahl;

Arabidopsis COP1 and SPA Genes Are Essential for Plant Elongation But Not for Acceleration of Flowering Time in Response to a Low Red Light to Far-Red Light Ratio

Abstract

Plants sense vegetative shade as a reduction in the ratio of red light to far-red light (R:FR). Arabidopsis (Arabidopsis thaliana) responds to a reduced R:FR with increased elongation of the hypocotyl and the leaf petioles as well as with an acceleration of flowering time. The repressor of light signaling, CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1), has been shown previously to be essential for the shade-avoidance response in seedlings. Here, we have investigated the roles of COP1 and the COP1-interacting SUPPRESSOR OF PHYA-105 (SPA) proteins in seedling and adult facets of the shade-avoidance response. We show that COP1 and the four SPA genes are essential for hypocotyl and leaf petiole elongation in response to low R:FR, in a fashion that involves the COP1/SPA ubiquitination target LONG HYPOCOTYL IN FR LIGHT1 but not ELONGATED HYPOCOTYL5. In contrast, the acceleration of flowering in response to a low R:FR was normal in cop1 and spa mutants, thus demonstrating that the COP1/SPA complex is only required for elongation responses to vegetative shade and not for shade-induced early flowering. We further show that spa mutant seedlings fail to exhibit an increase in the transcript levels of the auxin biosynthesis genes YUCCA2 (YUC2), YUC8, and YUC9 in response to low R:FR, suggesting that an increase in auxin biosynthesis in vegetative shade requires SPA function. Consistent with this finding, expression of the auxin-response marker gene DR5::GUS did not increase in spa mutant seedlings exposed to low R:FR. We propose that COP1/SPA activity, via LONG HYPOCOTYL IN FR LIGHT1, is required for shade-induced modulation of the auxin biosynthesis pathway and thereby enhances cell elongation in low R:FR.

Related Organizations
Keywords

Time Factors, Light, Arabidopsis Proteins, Ubiquitin-Protein Ligases, Arabidopsis, Nuclear Proteins, Flowers, Genes, Plant, Models, Biological, Hypocotyl, DNA-Binding Proteins, Plant Leaves, Open Reading Frames, Gene Expression Regulation, Plant, Seedlings, Mutation, RNA, Messenger

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 10%
Top 10%
Top 10%
bronze