Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Indonesian Journal o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Indonesian Journal of Combinatorics
Article . 2020 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Indonesian Journal of Combinatorics
Article
License: CC BY SA
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Computing total edge irregularity strength of some n-uniform cactus chain graphs and related chain graphs

Authors: Isnaini Rosyida; Diari Indriati;

Computing total edge irregularity strength of some n-uniform cactus chain graphs and related chain graphs

Abstract

<div class="page" title="Page 1"><div class="layoutArea"><div class="column"><p><span>Given graph </span><em>G</em><span>(</span><span><em>V</em>,<em>E</em></span><span>)</span><span>. We use the notion of total </span><em>k</em><span>-labeling which is edge irregular. The notion </span>of total edge irregularity strength (tes) of graph <em>G</em> means the minimum integer <em>k</em> used in the edge irregular total k-labeling of <em>G</em>. A cactus graph <em>G</em> is a connected graph where no edge lies in more than one cycle. A cactus graph consisting of some blocks where each block is cycle <em>C<sub>n</sub></em> with same size <em>n</em> is named an <em>n</em>-uniform cactus graph. If each cycle of the cactus graph has no more than two cut-vertices and each cut-vertex is shared by exactly two cycles, then <em>G</em> is called <em>n</em>-uniform cactus chain graph. In this paper, we determine tes of n-uniform cactus chain graphs <em>C</em>(<em>C<sub>n</sub><sup>r</sup></em>) of length <em>r</em> for some <em>n</em> ≡ 0 mod 3. We also investigate tes of related chain graphs, i.e. tadpole chain graphs <em>T<sub>r</sub></em>(4,<em>n</em>) and <em>T<sub>r</sub></em>(5,<em>n</em>) of length <em>r</em>. Our results are as follows: tes(<em>C</em>(<em>C<sub>n</sub><sup>r</sup></em>)) = ⌈(<em>nr</em> + 2)/3⌉ ; tes(<em>T<sub>r</sub></em>(4,<em>n</em>)) = ⌈((5+<em>n</em>)<em>r</em>+2)/3⌉ ; tes(<em>T<sub>r</sub></em>(5,<em>n</em>)) = ⌈((5+<em>n</em>)<em>r</em>+2)/3⌉.</p></div></div></div>

Keywords

total edge irregularity strength, tadpole graph, QA1-939, edge irregular total k-labeling, uniform, cactus chain, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average
gold