
arXiv: 0803.2334
Following the prescription of Ref. \cite{PST} in which perfect state transference (PST) of a qubit over distance regular spin networks was discussed, in this paper PST of an arbitrary $d$-level quantum state (qudit) over antipodes of more general networks called pseudo distance-regular networks, is investigated. In fact, the spectral analysis techniques used in the previous work \cite{PST}, and algebraic structures of pseudo distance-regular graphs are employed to give an explicit formula for suitable coupling constants in the Hamiltonians so that the state of a particular qudit initially encoded on one site will evolve freely to the opposite site without any dynamical control, i.e., we show that how to derive the parameters of the system so that PST can be achieved. Keywords:Perfect state transfer, $d$-level quantum state, Stratification, Pseudo-distance-regular network PACs Index: 01.55.+b, 02.10.Yn
28 pages, 5 figures
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
