Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.2...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.21203/rs.3....
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Physical and Engineering Sciences in Medicine
Article . 2022 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Predictive gamma passing rate of 3D detector array-based volumetric modulated arc therapy quality assurance for prostate cancer via deep learning

Authors: Takaaki Matsuura; Daisuke Kawahara; Akito Saito; Hideharu Miura; Kiyoshi Yamada; Shuichi Ozawa; Yasushi Nagata;

Predictive gamma passing rate of 3D detector array-based volumetric modulated arc therapy quality assurance for prostate cancer via deep learning

Abstract

Abstract Purpose To predict the gamma passing rate (GPR) of the three-dimensional (3D) detector array-based volumetric modulated arc therapy (VMAT) quality assurance (QA) for prostate cancer using a convolutional neural network (CNN) with the 3D dose distribution. Methods One hundred thirty-five VMAT plans for prostate cancer were selected: 110 plans were used for training and validation, and 25 plans were used for testing. Verification plans were measured using a helical 3D diode array (ArcCHECK). The dose distribution on the detector element plane of these verification plans was used as input data for the CNN model. The measured GPR (mGPR) values were used as the training data. The CNN model comprises eighteen layers and predicted GPR (pGPR) values. The mGPR and pGPR values were compared, and a cumulative frequency histogram of the prediction error was created to clarify the prediction error tendency. Results The correlation coefficients of pGPR and mGPR were 0.67, 0.69, 0.66, and 0.73 for 3%/3-mm, 3%/2-mm, 2%/3-mm, and 2%/2-mm tolerances, respectively. The respective mean\(\pm\)standard deviations of pGPR\(-\)mGPR were \(-\)0.87\(\pm\)2.18%, \(-\)0.65\(\pm\)2.93%, \(-\)0.44\(\pm\)2.53%, and \(-\)0.71\(\pm\)3.33%. The probabilities of underestimate cases (pGPR < mGPR) were 72%, 60%, 68%, and 56% for each tolerance. Conclusions We developed a deep learning-based prediction model of the 3D detector array-based VMAT QA for prostate cancer, and evaluated the accuracy and tendency of prediction GPR. This model can provide a proactive estimation for the results of the patient-specific QA before the verification measurement.

Keywords

Male, Deep Learning, Quality Assurance, Health Care, Radiotherapy Planning, Computer-Assisted, Humans, Prostatic Neoplasms, Radiotherapy, Intensity-Modulated

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
hybrid
Related to Research communities
Cancer Research