Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chemospherearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Chemosphere
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemosphere
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dendritic mesoporous carbon nanoparticles for ultrahigh and fast adsorption of anthracene

Authors: Mohammad Kalantari; Jun Zhang; Yang Liu; Chengzhong Yu;

Dendritic mesoporous carbon nanoparticles for ultrahigh and fast adsorption of anthracene

Abstract

Developing highly effective adsorbents for efficient decontamination of organic pollutants from water is an evasive aim for community well-being and environmental protection. Here, we report the successful fabrication of dendritic mesoporous carbon nanoparticles (DMCNs) as an advantageous adsorbent for ultrahigh and fast adsorption of anthracene. Dendritic mesoporous organosilica nanoparticles with an octadecyl-rich framework were utilized to synthesize DMCNs through carbonization and removal of silica. The DMCNs show a high carbon content, large mesopore volume of 1.484 cm3 g-1 and high surface area of 1218 m2 g-1. It is revealed that both the high carbon content and highly accessible large surface area contribute to the excellent adsorption capacity towards anthracene (947.9 mg g-1), which is significantly higher than those in previous reports. Furthermore, the large radial pores of DMCNs with bimodal pore size distributions (2.1 and 18.4 nm) and open pore channels allow fast adsorption kinetics. The developed materials hold promise as effective adsorbents for efficient remediation of organic pollutants.

Country
Australia
Keywords

Anthracenes, Water, General Chemistry, General Medicine, 1600 Chemistry, 333, Carbon, Kinetics, 2307 Health, 2305 Environmental Engineering, 2304 Environmental Chemistry, 2310 Pollution, Environmental Chemistry, Nanoparticles, Toxicology and Mutagenesis, Adsorption, Hydrophobic and Hydrophilic Interactions, Porosity

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Top 10%
bronze