Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A new repeatable, optical writing and electrical erasing device based on photochromism and electrochromism of viologen

Authors: Guo-jing Ding; Yu-lin Yang; Yue-chuan Wang; Li-ping Gao; Jian Wei;

A new repeatable, optical writing and electrical erasing device based on photochromism and electrochromism of viologen

Abstract

New optical writing and electrical erasing devices have been successfully fabricated that exploit the photochromism and electrochromism of viologen. In a preliminary study, both the structures of viologen and device were investigated in detail by UV?vis spectra in order to confirm their effects on the optical writing and electrical erasing performances of corresponding devices. For sandwiched, single and complementary devices based on benzyl viologen (BV 2+), only optical writing can be performed, not electrical erasing operations, which indicated these devices cannot realize optical information rewriting. For single and complementary devices based on styrene-functional viologen (V BV 2+) and acrylic-functional viologen (ACV 2+), optical writing and electrical erasing operations can be reversibly performed and optical information rewriting realized. It is clear that single devices based on V BV2+ and ACV2+ possess better performance accompanied with contrast without significant degradation and bleaching times and without significant deterioration over 10 repeated writing/erasing cycles. Furthermore, we put forward possible mechanisms for sandwiched, single and complementary devices based on V BV2+ and ACV2+ for the optical writing and electrical erasing operations. This study provides a new strategy to design optical writing and electrical erasing devices to realize optical information rewriting.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!