Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Very Large Scale Integration (VLSI) Systems
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cryptographic Accelerators for Digital Signature Based on Ed25519

Authors: Mojtaba Bisheh-Niasar; Reza Azarderakhsh; Mehran Mozaffari-Kermani;

Cryptographic Accelerators for Digital Signature Based on Ed25519

Abstract

This article presents highly optimized implementations of the Ed25519 digital signature algorithm [Edwards curve digital signature algorithm (EdDSA)]. This algorithm significantly improves the execution time without sacrificing security, compared to exiting digital signature algorithms. Although EdDSA is employed in many widely used protocols, such as TLS and SSH, there appear to be extremely few hardware implementations that focus only on EdDSA. Hence, we propose two different field-programmable gate array (FPGA)-based EdDSA implementations, i.e., efficient and high-performance Ed25519 architectures applicable for a security level comparable to AES-128. Our proposed efficient Ed25519 scheme achieves an improvement of more than 84% compared to the best previous work by reducing the required area. It also incorporates more than $8\times $ speedup. Furthermore, our proposed high-performance architecture shows a $21\times $ speedup with more than 6200 digital signature algorithms per second, showing a significant improvement in terms of utilized area $\times $ time on a Xilinx Zynq-7020 FPGA. Finally, the effective side-channel countermeasures are embedded in our proposed designs, which also outperform the previous works.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    87
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
87
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!