
arXiv: 1602.02740
Toom-Cook multiprecision multiplication is a well-known multiprecision multiplication method, which can make use of multiprocessor systems. In this paper the Toom-Cook complexity is derived, some explicit proofs of the Toom-Cook interpolation method are given, the even-odd method for interpolation is explained, and certain aspects of a 32-bit C++ and assembler implementation, which is in development, are discussed. A performance graph of this implementation is provided. The Toom-Cook method can also be used to multithread other types of multiplication, which is demonstrated for 32-bit GMP FFT multiplication.
FOS: Mathematics, Mathematics - Numerical Analysis, Numerical Analysis (math.NA)
FOS: Mathematics, Mathematics - Numerical Analysis, Numerical Analysis (math.NA)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
