Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Inorganica Chimica A...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Inorganica Chimica Acta
Article . 1985 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The chemistry of rhenium and technetium. Part III. The synthesis and characterisation of oxo-bis-(tetrathiomolybdenato)-technetium(V) and its reduction by triphenylphosphine

Authors: J.G.H. Du Preez; T.I.A. Gerber;

The chemistry of rhenium and technetium. Part III. The synthesis and characterisation of oxo-bis-(tetrathiomolybdenato)-technetium(V) and its reduction by triphenylphosphine

Abstract

Abstract The Complexes (Bu4N)[TcO(MoS4)2] and Tc- (PPh3)2(MoS4)2 were prepared. The former complex has a much lower Tc-O stretching frequency than is generally found gor the TcO3+. moiety. The latter technetium(IV) Complex was obtained by the reduction of Tc(v) O(MoS4)2− with triphenylphosphine and also by the substitution reaction of TcCl4(PPh3)2 with MoS42-. Previous reductions of this nature have led to the isolation of species that differ by two formal oxidation state numbers from the oxidant.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!