
The persistent tetrodotoxin (TTX)-sensitive sodium current, detected in neurons of many regions of mammalian brains, is associated with many essential neuronal activities, including boosting of excitatory synaptic inputs, acceleration of firing rates, and promotion of oscillatory neuronal activities. However, the origin and molecular basis of the persistent current have remained controversial for decades. Here, we provide direct evidence that U-to-C RNA editing of an insect sodium channel transcript generates a sodium channel with a persistent current. We detected a persistent TTX-sensitive current in a splice variant of the cockroach sodium channel gene BgNa v (formerly para CSMA ). Site-directed mutagenesis experiments revealed that an F-to-S change at the C-terminal domain of this variant was responsible for the persistent current. We demonstrated that this F-to-S change was the result of a U-to-C RNA editing event, which also occurred in the Drosophila para sodium channel transcript. Our work provides direct support for the hypothesis that posttranscriptional modification of a conventional transient sodium channel produces a persistent TTX-sensitive sodium channel.
Insecta, Neuropeptides, Sodium, Genetic Variation, Cockroaches, Tetrodotoxin, Sodium Channels, Mutagenesis, Site-Directed, Animals, Protein Isoforms, RNA Editing
Insecta, Neuropeptides, Sodium, Genetic Variation, Cockroaches, Tetrodotoxin, Sodium Channels, Mutagenesis, Site-Directed, Animals, Protein Isoforms, RNA Editing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 53 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
