
Coronaviruses comprise a large group of RNA viruses with diverse host specificity. The emergence of highly pathogenic strains like the SARS coronavirus (SARS‐CoV), and the discovery of two new coronaviruses, NL‐63 and HKU1, corroborates the high rate of mutation and recombination that have enabled them to cross species barriers and infect novel hosts. For that reason, the development of broad‐spectrum antivirals that are effective against several members of this family is highly desirable. This goal can be accomplished by designing inhibitors against a target, such as the main protease 3CLpro (Mpro), which is highly conserved among all coronaviruses. Here 3CLpro derived from the SARS‐CoV was used as the primary target to identify a new class of inhibitors containing a halomethyl ketone warhead. The compounds are highly potent against SARS 3CLpro with Ki’s as low as 300 nm. The crystal structure of the complex of one of the compounds with 3CLpro indicates that this inhibitor forms a thioether linkage between the halomethyl carbon of the warhead and the catalytic Cys 145. Furthermore, Structure Activity Relationship (SAR) studies of these compounds have led to the identification of a pharmacophore that accurately defines the essential molecular features required for the high affinity.
3C Viral Proteases, Ketones, Crystallography, X-Ray, Antiviral Agents, Coronavirus, Cysteine Endopeptidases, Kinetics, Structure-Activity Relationship, Viral Proteins, Drug Design, Protease Inhibitors, Research Articles
3C Viral Proteases, Ketones, Crystallography, X-Ray, Antiviral Agents, Coronavirus, Cysteine Endopeptidases, Kinetics, Structure-Activity Relationship, Viral Proteins, Drug Design, Protease Inhibitors, Research Articles
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 48 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
