
pmid: 9020131
Association of calnexin with newly synthesized glycoproteins involves recognition of monoglucosylated glycans, generated in the endoplasmic reticulum via initial removal of two glucose (Glc) residues from immature glycan chains by glucosidase enzymes (Glc trimming), or addition of a single Glc residue to fully trimmed glycans by glucosyltransferase enzymes (reglucosylation). While it has been established that creation of monoglucosylated glycans is important for chaperone binding, it is unknown if most proteins require both deglucosylation and reglucosylation for calnexin assembly or if initial Glc trimming is sufficient. Here, we studied the deglucosylation and reglucosylation of two related glycoproteins, the alpha and beta subunits of the T cell receptor (TCR) complex, and their assembly with calnexin in BW thymoma cells. Our data demonstrate that TCRalpha/beta glycoproteins undergo multiple cycles of Glc removal and addition within the endoplasmic reticulum and that numerous reglucosylated proteins assemble with calnexin, including TCRalpha/beta glycoproteins. Importantly, the current study shows that TCRbeta proteins, but not TCRalpha proteins, effectively associate with calnexin under conditions of functional Glc trimming but impaired reglucosylation. These data demonstrate that reglucosylated proteins associate with lectin-like chaperones in vivo and provide evidence that reglucosylation is of differential importance for the association of individual, indeed similar, glycoproteins with calnexin.
Glycosylation, Calnexin, Polysaccharides, Receptors, Antigen, T-Cell, alpha-beta, Calcium-Binding Proteins, Protein Processing, Post-Translational, Cell Line
Glycosylation, Calnexin, Polysaccharides, Receptors, Antigen, T-Cell, alpha-beta, Calcium-Binding Proteins, Protein Processing, Post-Translational, Cell Line
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 48 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
