Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1997 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reglucosylation of N-Linked Glycans Is Critical for Calnexin Assembly with T Cell Receptor (TCR) α Proteins but Not TCRβ Proteins

Authors: J E, Van Leeuwen; K P, Kearse;

Reglucosylation of N-Linked Glycans Is Critical for Calnexin Assembly with T Cell Receptor (TCR) α Proteins but Not TCRβ Proteins

Abstract

Association of calnexin with newly synthesized glycoproteins involves recognition of monoglucosylated glycans, generated in the endoplasmic reticulum via initial removal of two glucose (Glc) residues from immature glycan chains by glucosidase enzymes (Glc trimming), or addition of a single Glc residue to fully trimmed glycans by glucosyltransferase enzymes (reglucosylation). While it has been established that creation of monoglucosylated glycans is important for chaperone binding, it is unknown if most proteins require both deglucosylation and reglucosylation for calnexin assembly or if initial Glc trimming is sufficient. Here, we studied the deglucosylation and reglucosylation of two related glycoproteins, the alpha and beta subunits of the T cell receptor (TCR) complex, and their assembly with calnexin in BW thymoma cells. Our data demonstrate that TCRalpha/beta glycoproteins undergo multiple cycles of Glc removal and addition within the endoplasmic reticulum and that numerous reglucosylated proteins assemble with calnexin, including TCRalpha/beta glycoproteins. Importantly, the current study shows that TCRbeta proteins, but not TCRalpha proteins, effectively associate with calnexin under conditions of functional Glc trimming but impaired reglucosylation. These data demonstrate that reglucosylated proteins associate with lectin-like chaperones in vivo and provide evidence that reglucosylation is of differential importance for the association of individual, indeed similar, glycoproteins with calnexin.

Related Organizations
Keywords

Glycosylation, Calnexin, Polysaccharides, Receptors, Antigen, T-Cell, alpha-beta, Calcium-Binding Proteins, Protein Processing, Post-Translational, Cell Line

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Average
Top 10%
Top 10%
gold