Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Fluid Mec...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Fluid Mechanics
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2022
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Characterization of unsteady separation in a turbulent boundary layer: mean and phase-averaged flow

Authors: Francesco Ambrogi; U. Piomelli; D.E. Rival;

Characterization of unsteady separation in a turbulent boundary layer: mean and phase-averaged flow

Abstract

A spatially developing turbulent boundary layer subject to a space- and time-dependent pressure gradient is analysed via large-eddy simulation. The unsteadiness is prescribed by imposing an oscillating suction–blowing velocity profile at the top boundary of the computational domain. The alternating favourable and adverse pressure gradients cause the flow to separate and reattach to the wall periodically. A range of reduced frequencies $k$ was investigated, spanning from a very rapid flutter-like motion to a slow, quasi-steady flapping. The Reynolds number based on the boundary-layer displacement thickness $\delta _o^{*}$ at the inflow plane is $Re_*=1000$ . Both time- and phase-averaged fields are analysed and results are compared with steady conditions. The reduced frequency $k$ has a significant effect on the transient flow-separation process. For high $k$ the separation bubble does not grow as thick as in the corresponding steady case, but the length of the bubble remains comparable; hysteresis is observed in the near-wall region. As $k$ is reduced, a threshold is met at which the separation bubble grows in the wall-normal direction. However, the length of the bubble is significantly reduced again when compared with the steady case. At this frequency, the region of slow-moving fluid generated by the flow reversal is advected downstream, causing a decorrelation between the forcing (the imposed free-stream velocity) and the velocity and pressure downstream of the separation bubble. Moreover, hysteresis effects are shifted away from the wall. At the lowest frequency a quasi-steady solution is approached; however, transient effects are still present in the backflow region.

Keywords

Turbulent boundary layers, quasi-steady solution, Direct numerical and large eddy simulation of turbulence, large eddy simulation, separation bubble dynamics, time-dependent pressure gradient

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
hybrid