
handle: 10045/68891
This paper presents an unsupervised approach to solve semantic ambiguity based on the integration of the Personalized PageRank algorithm with word-sense frequency information. Natural Language tasks such as Machine Translation or Recommender Systems are likely to be enriched by our approach, which includes semantic information that obtains the appropriate word-sense via support from two sources: a multidimensional network that includes a set of different resources (i.e. WordNet, WordNet Domains, WordNet Affect, SUMO and Semantic Classes); and the information provided by word-sense frequencies and word-sense collocation from the SemCor Corpus. Our series of results were analyzed and compared against the results of several renowned studies using SensEval-2, SensEval-3 and SemEval-2013 datasets. After conducting several experiments, our procedure produced the best results in the unsupervised procedure category taking SensEval campaigns rankings as reference.
This research work has been partially funded by the University of Alicante, Generalitat Valenciana , Spanish Government, Ministerio de Educación, Cultura y Deporte and ASAP - Ayudas Fundación BBVA a equipos de investigación científica 2016(FUNDACIONBBVA2-16PREMIO) through the projects, TIN2015- 65100-R, TIN2015-65136-C2-2-R, PROMETEOII/2014/001, GRE16- 01: “Plataforma inteligente para recuperación, análisis y representación de la información generada por usuarios en Internet” and PR16_SOC_0013.
Natural language processing, Graph-based, Lenguajes y Sistemas Informáticos, Pagerank, Word Sense Disambiguation, Knowledge-based
Natural language processing, Graph-based, Lenguajes y Sistemas Informáticos, Pagerank, Word Sense Disambiguation, Knowledge-based
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
