Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Cellular Basis of GABA B -Mediated Interhemispheric Inhibition

Authors: Lucy M. Palmer; Sean C. Murphy; Debora Ledergerber; Masanori Murayama; Matthew E. Larkum; Matthew E. Larkum; Jan M. Schulz;

The Cellular Basis of GABA B -Mediated Interhemispheric Inhibition

Abstract

Curbing the Other Side The two hemispheres of the brain are connected via the corpus callosum; however, this pathway and its function are still not fully understood. Palmer et al. (p. 989 ) used a combination of optogenetic, calcium-imaging, and electrophysiological methods to investigate the cellular mechanism of interhemispheric inhibition of the firing frequency of neocortical layer 5 pyramidal neurons in rats in vivo and in vitro. They discovered that this form of inhibition involved interneurons in the top layers of the cortex that suppressed active dendritic currents synergistically recruited by back-propagating action potentials. This mechanism depended upon a γ-aminobutyric acid type B receptor–mediated mechanism acting on specific ion channels in the dendrites of pyramidal neurons.

Keywords

Patch-Clamp Techniques, Pyramidal Cells, Action Potentials, Neural Inhibition, Dendrites, Somatosensory Cortex, Electric Stimulation, Corpus Callosum, Hindlimb, Rats, Receptors, GABA-B, Interneurons, Animals, Calcium, Rats, Wistar, Cerebrum

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    264
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
264
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!