Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2004 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reduction of Menin Expression Enhances Cell Proliferation and Is Tumorigenic in Intestinal Epithelial Cells

Authors: Christelle, Ratineau; Christine, Bernard; Gilles, Poncet; Martine, Blanc; Claire, Josso; Sandra, Fontanière; Alain, Calender; +3 Authors

Reduction of Menin Expression Enhances Cell Proliferation and Is Tumorigenic in Intestinal Epithelial Cells

Abstract

Menin, the product of the tumor suppressor gene MEN1, is widely expressed in mammalian endocrine and non-endocrine tissues, including intestine. Its known abundant expression in several types of cells with high proliferative capacity led us to investigate the physiological function of the protein menin in intestinal epithelium, one of the most rapidly growing epithelia. Here we showed that the Men1 gene is mainly expressed in the crypt compartment of the proximal small intestine and that its expression was increased during fasting in vivo, both suggesting a role of menin in the control of cell growth. Indeed, specific reduction of menin expression by transfected antisense cDNA in the rat duodenal crypt-like cell line, IEC-17, increased cell proliferation. The latter is correlated to a loss of cell-cycle arrest in G(1) phase by resting cells and an overexpression of cyclin D1 and cyclin-dependent kinase (Cdk)-4. Furthermore, these cells lost the inhibition of proliferation induced by transforming growth factor-beta1, associated with a decrease of transforming growth factor-beta type II receptor expression. As a result of deregulated proliferation, antisense menin transfected IEC-17 cells became tumorigenic as shown in vitro as well as in vivo in immunosuppressed animals. These results indicate that menin contributes to proliferation control in intestinal epithelial cells. The present study reveals an unknown physiological function for menin in intestine that may be important in the regulation of epithelial homeostasis.

Keywords

Immunosuppression Therapy, Heterozygote, DNA, Complementary, Blotting, Western, Cell Cycle, G1 Phase, Cyclin-Dependent Kinase 4, Down-Regulation, Epithelial Cells, Cell Separation, Fasting, Flow Cytometry, Immunohistochemistry, Cyclin-Dependent Kinases, Cell Line, Agar, Cytoskeletal Proteins, Animals, Cyclin D1, Cell Division

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Average
Top 10%
Top 10%
gold