
doi: 10.1145/3447812
As quantum computers become more affordable and commonplace, existing security systems that are based on classical cryptographic primitives, such as RSA and Elliptic Curve Cryptography ( ECC ), will no longer be secure. Hence, there has been interest in designing post-quantum cryptographic ( PQC ) schemes, such as those based on lattice-based cryptography ( LBC ). The potential of LBC schemes is evidenced by the number of such schemes passing the selection of NIST PQC Standardization Process Round-3. One such scheme is the Crystals-Dilithium signature scheme, which is based on the hard module-lattice problem. However, there is no efficient implementation of the Crystals-Dilithium signature scheme. Hence, in this article, we present a compact hardware architecture containing elaborate modular multiplication units using the Karatsuba algorithm along with smart generators of address sequence and twiddle factors for NTT, which can complete polynomial addition/multiplication with the parameter setting of Dilithium in a short clock period. Also, we propose a fast software/hardware co-design implementation on Field Programmable Gate Array ( FPGA ) for the Dilithium scheme with a tradeoff between speed and resource utilization. Our co-design implementation outperforms a pure C implementation on a Nios-II processor of the platform Altera DE2-115, in the sense that our implementation is 11.2 and 7.4 times faster for signature and verification, respectively. In addition, we also achieve approximately 51% and 31% speed improvement for signature and verification, in comparison to the pure C implementation on processor ARM Cortex-A9 of ZYNQ-7020 platform.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 34 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
