Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ACM Transactions on ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Software/Hardware Co-Design of Crystals-Dilithium Signature Scheme

Authors: Zhen Zhou; Debiao He; Zhe Liu; Min Luo; Kim-Kwang Raymond Choo;

A Software/Hardware Co-Design of Crystals-Dilithium Signature Scheme

Abstract

As quantum computers become more affordable and commonplace, existing security systems that are based on classical cryptographic primitives, such as RSA and Elliptic Curve Cryptography ( ECC ), will no longer be secure. Hence, there has been interest in designing post-quantum cryptographic ( PQC ) schemes, such as those based on lattice-based cryptography ( LBC ). The potential of LBC schemes is evidenced by the number of such schemes passing the selection of NIST PQC Standardization Process Round-3. One such scheme is the Crystals-Dilithium signature scheme, which is based on the hard module-lattice problem. However, there is no efficient implementation of the Crystals-Dilithium signature scheme. Hence, in this article, we present a compact hardware architecture containing elaborate modular multiplication units using the Karatsuba algorithm along with smart generators of address sequence and twiddle factors for NTT, which can complete polynomial addition/multiplication with the parameter setting of Dilithium in a short clock period. Also, we propose a fast software/hardware co-design implementation on Field Programmable Gate Array ( FPGA ) for the Dilithium scheme with a tradeoff between speed and resource utilization. Our co-design implementation outperforms a pure C implementation on a Nios-II processor of the platform Altera DE2-115, in the sense that our implementation is 11.2 and 7.4 times faster for signature and verification, respectively. In addition, we also achieve approximately 51% and 31% speed improvement for signature and verification, in comparison to the pure C implementation on processor ARM Cortex-A9 of ZYNQ-7020 platform.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!