<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
AbstractThe Cardiomyopathy–associated gene 5 (Cmya5) encodes myospryn, a large tripartite motif (TRIM)-related protein found predominantly in cardiac and skeletal muscle. Cmya5 is an expression biomarker for a number of diseases affecting striated muscle and may also be a schizophrenia risk gene. To further understand the function of myospryn in striated muscle, we searched for additional myospryn paralogs. Here we identify a novel muscle-expressed TRIM-related protein minispryn, encoded by Fsd2, that has extensive sequence similarity with the C-terminus of myospryn. Cmya5 and Fsd2 appear to have originated by a chromosomal duplication and are found within evolutionarily-conserved gene clusters on different chromosomes. Using immunoaffinity purification and mass spectrometry we show that minispryn co-purifies with myospryn and the major cardiac ryanodine receptor (RyR2) from heart. Accordingly, myospryn, minispryn and RyR2 co-localise at the junctional sarcoplasmic reticulum of isolated cardiomyocytes. Myospryn redistributes RyR2 into clusters when co-expressed in heterologous cells whereas minispryn lacks this activity. Together these data suggest a novel role for the myospryn complex in the assembly of ryanodine receptor clusters in striated muscle.
570, Science, Q, R, Intracellular Signaling Peptides and Proteins, 610, Muscle Proteins, Ryanodine Receptor Calcium Release Channel, Q1, Article, Chromatography, Affinity, Mass Spectrometry, Mice, Sarcoplasmic Reticulum, HEK293 Cells, COS Cells, Chlorocebus aethiops, Chromosome Duplication, Medicine, Animals, Humans, Cloning, Molecular, Carrier Proteins
570, Science, Q, R, Intracellular Signaling Peptides and Proteins, 610, Muscle Proteins, Ryanodine Receptor Calcium Release Channel, Q1, Article, Chromatography, Affinity, Mass Spectrometry, Mice, Sarcoplasmic Reticulum, HEK293 Cells, COS Cells, Chlorocebus aethiops, Chromosome Duplication, Medicine, Animals, Humans, Cloning, Molecular, Carrier Proteins
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 29 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |