Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Zaporozhye Medical J...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Zaporozhye Medical Journal
Article . 2019 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Zaporozhye Medical Journal
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Zaporozhye Medical Journal
Article . 2019
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cardioprotective activity and screening of N-substituted of quinazolin-4(3Н)-ones

Authors: Dzhyhaliuk, O. V.; Stepaniuk, H. I.; Schabelnyk, K. P.; Kоvalenko, S. І.; Pashynska, O. S.;

Cardioprotective activity and screening of N-substituted of quinazolin-4(3Н)-ones

Abstract

Cardioprotection is a promising direction of therapy for myocardial infarction and the search for new substances with cardioprotective properties remains an urgent task in pharmacology. N-substituted quinazolin-4(3H)-ones, which are characterized by antihypoxic, antioxidant, angioprotective, anti-inflammatory, and others properties may have the cardioprotective activity. The purpose of the study is to detect the presence and the degree of cardioprotective effect in a number of N-substituted quinazolin-4(3H)-ones in the model of acute experimental myocardial infarction in different modes of administration, to determine a “structure – action” dependence, to identify a leader compound promising for in-depth study of its pharmacological properties. Materials and methods. 300 non-linear rats of both sexes, weighing 180–220 g, were used in this study. Myocardial infarction was modeled by diathermocoagulation of the coronary artery. In the 1st series of experiments, the studied substances and reference drugs amiodarone, mexidol and thiotriazoline were administered in the prophylactic, and in the 2nd series – in the therapeutic regimen. The cardioprotective effect size was estimated on the basis of the mortality rate of animals. Results. The cardioprotective activity of both the test compounds and reference drugs was evidenced by a decrease in the mortality rate of animals with a heart attack in the critical periods of the experiment relative to the control. The PC-66 has been found to be the most effective: the mortality rate was 20 % versus 54 % of the control in the critical period of the experiment, that is, it was 2.7 times less than in the control. The test substances by the degree of cardioprotective effect in the course of therapeutic introduction into the body can be arranged in the following order: PC-66 = amiodarone ≥ mexidol ≥ thiotriazoline> PC-32 = PC-51. Cardioprotection, the signs of which were found in the PC-66 compound, are well combined with the presence of central analgesic and cerebroprotective effects, which suggests the multifactorial effects of this substance. We can state the originality of the resulting substance and its potential properties. Conclusions. N-substituted quinazolin-4(3H)-ones exhibit cardioprotective activity. 4-(4-oxo-4H-quinazolin-3-yl) benzoic acid (compound PC-66) displays cardioprotective properties the most. The obtained data testify to the prospects of the pharmacological properties and safety of the PC-66 compound in-depth study.

Keywords

амиодарон, аміодарон, R, тиотриазолин, мексидол, инфаркт миокарда, mexidol, myocardial infarction, тіотріазолін, thiotriazolin, Medicine, мексідол, інфаркт міокарда, amiodarone

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities