
Annotation of eukaryotic genomes is a complex endeavor that requires the integration of evidence from multiple, often contradictory, sources. With the ever-increasing amount of genome sequence data now available, methods for accurate identification of large numbers of genes have become urgently needed. In an effort to create a set of very high-quality gene models, we used the sequence of 5,000 full-length gene transcripts from Arabidopsis to re-annotate its genome. We have mapped these transcripts to their exact chromosomal locations and, using alignment programs, have created gene models that provide a reference set for this organism.Approximately 35% of the transcripts indicated that previously annotated genes needed modification, and 5% of the transcripts represented newly discovered genes. We also discovered that multiple transcription initiation sites appear to be much more common than previously known, and we report numerous cases of alternative mRNA splicing. We include a comparison of different alignment software and an analysis of how the transcript data improved the previously published annotation.Our results demonstrate that sequencing of large numbers of full-length transcripts followed by computational mapping greatly improves identification of the complete exon structures of eukaryotic genes. In addition, we are able to find numerous introns in the untranslated regions of the genes.
570, genome sequence, mRNA, introns, RNA Splicing, Arabidopsis, eukaryotic genomes, Computational Biology, gene models, DNA, Exons, Genes, Plant, exons, 576, Alternative Splicing, RNA, Plant, Databases, Genetic, RNA, Messenger, Genome, Plant
570, genome sequence, mRNA, introns, RNA Splicing, Arabidopsis, eukaryotic genomes, Computational Biology, gene models, DNA, Exons, Genes, Plant, exons, 576, Alternative Splicing, RNA, Plant, Databases, Genetic, RNA, Messenger, Genome, Plant
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 169 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
