Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Chapter 3 Genesis of Volcanic Ash Soils

Authors: Sadao Shoji; Randy A. Dahlgren; Masami Nanzyo;

Chapter 3 Genesis of Volcanic Ash Soils

Abstract

Publisher Summary Volcanic ash or tephra is commonly unconsolidated, comminuted materials containing a large quantity of volcanic glass which shows the least resistance to chemical weathering. Therefore, tephras weather rapidly resulting in formation of large amounts of noncrystalline materials. This process occurring preferentially in tephras was first called “andosolizatiod" by Duchaufour. Development of A horizons by andosolization is characterized by accumulation of organic matter, organic matter stabilization by active Al and Fe, carbonic acid weathering (allophanic) versus organic acid weathering (nonallophanic), andformation of laminar opaline silica. Formation of B horizons proceeds primarily by carbonic acid weathering with no significant translocation of Al, Fe, and dissolved organic carbon. Therefore, preferential formation of noncrystalline materials such as allophane, imogolite, laminar opaline silica, ferrihydrite, and Al/Fe humus complexes is a characteristic feature of the process of andosolization. Such formation of noncrystalline materials is not specific to Andisols. It is also widely observed for tephra-derived Spodosols making it difficult to separate Andisols and tephra-derived Spodosols according to solid-phase chemical criteria. Andisols can form in tephras by andosolization in a relatively short time under most climates throughout the world.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    82
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
82
Top 10%
Top 10%
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!