Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Plantaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Planta
Article . 2005 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Planta
Article . 2006
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The ARABIDOPSIS SKP1-LIKE1 (ASK1) protein acts predominately from leptotene to pachytene and represses homologous recombination in male meiosis

Authors: Yixing, Wang; Ming, Yang;

The ARABIDOPSIS SKP1-LIKE1 (ASK1) protein acts predominately from leptotene to pachytene and represses homologous recombination in male meiosis

Abstract

Normal progression of genetic recombination requires timely degradation of many proteins, but little is known about the proteolytic mechanism. The ARABIDOPSIS SKP1-LIKE1 (ASK1) protein is a component of the Skp1-Cullin-F-box-protein (SCF) ubiquitin ligases that target a variety of proteins for degradation via the 26S proteasome pathway. Previous studies indicate that the early defects of the mutant ask1-1 occur in a prophase-I period overlapping with the period of homologous recombination. We provide evidence in this report that ASK1 is predominately expressed from leptotene to pachytene, and negatively regulates recombination. First, the ASK1 transcript was found not to co-exist with that of its closest homolog ASK2 only during prophase I of male meiosis, suggesting that ASK1 is functionally non-redundant only in prophase I. Second, the peak level of an ASK1-green fluorescence protein (GFP) fusion protein expressed by an ASK1 promoter region occurred only from leptotene to pachytene. The ASK1-GFP in a dominant negative fashion resulted in abnormal tetrads resembling those of the ask1-1 mutant, supporting that the expression timing of the ASK1-GFP in male meiocytes reflects the expression timing of the endogenous ASK1. Lastly, using a marker for recombination events, a significant increase in recombination frequency was detected in plants heterozygous for ask1-1. These results indicate that ASK1 normally plays a repressive role in male recombination in Arabidopsis.

Keywords

Recombination, Genetic, Arabidopsis Proteins, Recombinant Fusion Proteins, Green Fluorescent Proteins, Mutation, Arabidopsis, Pachytene Stage, Meiotic Prophase I, Biomarkers

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!