Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of the India...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of the Indian Society of Remote Sensing
Article . 2016 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Combination of Spectral and Textural Features in the MSG Satellite Remote Sensing Images for Classifying Rainy Area into Different Classes

Authors: Y. Mohia; S. Ameur; M. Lazri; J. M. Brucker;

Combination of Spectral and Textural Features in the MSG Satellite Remote Sensing Images for Classifying Rainy Area into Different Classes

Abstract

The rainfall intensity classification technique using spectral and textural features from MSG/SEVIRI (Meteosat Second Generation/Spinning Enhanced Visible and Infrared) satellite data is proposed in this paper. The study is carried out over north of Algeria. The developed method is based on the artificial neural multilayer perceptron network (MLP). Two MLP algorithms are used: the MLP-S based only on spectral parameters and the MLP-ST that use both spectral and textural features. The MLP model is created with three layers (input, hidden, and output) that consist of 6 output neurons in the output layer that represent the 6 rain intensities classes: very high, moderate to high, moderate, light to moderate, light and no rain and 10 spectral input neurons for the MLP-S and 15 input neurons for MLP-ST, which as ten spectral features that were calculated from MSG thermal infrared brilliance temperature and brilliance temperature difference and as five textural features, and The rainfall intensity areas classified by the proposed technique are validated against ground-based radar data. The rainfall rates used in the training set are derived from Setif radar measurements (Algeria). The results obtained after applying this method show that the introduction of textural parameters as additional information works in improving the classification of different rainfall intensities pixels in the MSG/SEVIRI imagery compared to the techniques based only on spectral information. These results are compared with results obtained with the probability of rainfall intensity (PRI). This comparison revealed a clear outperformance of the MLP algorithms over the PRI algorithms. Best results are provided by the MLP-ST algorithm. The combination of spectral and textural features in the MSG–SEVIRI imagery is important and for the classification of the rainfall intensities to different classes.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!