
SummaryBinding of arrestin to phosphorylated G protein-coupled receptors (GPCRs) is crucial for modulating signaling. Once internalized some GPCRs may complex with arrestin, while others interact transiently; this difference affects receptor signaling and recycling. Cell-based and in vitro biophysical assays reveal the role of membrane phosphoinositides (PIPs) in arrestin recruitment and GPCR-arrestin complex dynamics. We find that GPCRs broadly stratify into two groups, one requiring PIP-binding for arrestin recruitment and one that does not. Plasma membrane PIPs potentiate an active conformation of arrestin and stabilize GPCR-arrestin complexes by promoting a receptor core-engaged state of the complex. As allosteric modulators of GPCR-arrestin complex dynamics, membrane PIPs allow for additional conformational diversity beyond that imposed by GPCR phosphorylation alone. The dependance on membrane PIPs provides a mechanism for arrestin release from transiently associated GPCRs, allowing their rapid recycling, while explaining how stably associated GPCRs are able to engage G proteins at endosomes.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
