
AbstractSARS‐CoV‐2 caused the emerging epidemic of coronavirus disease in 2019 (COVID‐19). To date, there are more than 82.9 million confirmed cases worldwide, there is no clinically effective drug against SARS‐CoV‐2 infection. The conserved properties of the membrane fusion domain of the spike (S) protein across SARS‐CoV‐2 make it a promising target to develop pan‐CoV therapeutics. Herein, two clinically approved drugs, Itraconazole (ITZ) and Estradiol benzoate (EB), are found to inhibit viral entry by targeting the six‐helix (6‐HB) fusion core of SARS‐CoV‐2 S protein. Further studies shed light on the mechanism that ITZ and EB can interact with the heptad repeat 1 (HR1) region of the spike protein, to present anti‐SARS‐CoV‐2 infections in vitro, indicating they are novel potential therapeutic remedies for COVID‐19 treatment. Furthermore, ITZ shows broad‐spectrum activity targeting 6‐HB in the S2 subunit of SARS‐CoV and MERS‐CoV S protein, inspiring that ITZ have the potential for development as a pan‐coronavirus fusion inhibitor.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 27 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
