Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Astrophysical Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Astrophysical Journal
Article . 2015 . Peer-reviewed
License: IOP Copyright Policies
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2014
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

LATE-TIME NEAR-INFRARED OBSERVATIONS OF SN 2005df

Authors: Tiara R. Diamond; Peter Hoeflich; Christopher L. Gerardy;

LATE-TIME NEAR-INFRARED OBSERVATIONS OF SN 2005df

Abstract

We present late-time ($200-400$ days) near-infrared spectral evolution for the Type Ia supernova SN 2005df. The spectra show numerous strong emission features of [CoII], [CoIII], and [FeII] throughout the $0.8-1.8$��m region. As the spectrum ages, the cobalt features fade as would be expected from the decay of $^{56}$Co to $^{56}$Fe. We show that the strong and isolated [FeII] emission line at $1.644$��m provides a unique tool to analyze near-infrared spectra of Type Ia supernovae. Normalization of spectra to this line allows separation of features produced by stable versus unstable isotopes of iron group elements. We develop a new method of determining the initial central density, $��_c$, and the magnetic field, $B$, of the white dwarf using the width of the $1.644$��m line. The line width is sensitive because of electron capture in the early stages of burning, which increases as a function of density. The sensitivity of the line width to $B$ increase with time and the effects of the magnetic field shift towards later times with decreasing $��_c$. The initial central density for SN 2005df is measured as $��_c=0.9(\pm0.2)$ (in $10^9$g/cm$^3$), which corresponds to a white dwarf close to the Chandrasekhar mass ($\rm M_{Ch}$) with $\rm M_{WD}=1.313(\pm0.034)$M$_{\odot}$ and systematic error less than $0.04$M$_{\odot}$. Within $\rm M_{Ch}$ explosions, however, the central density found for SN 2005df is very low for a H-accretor, possibly suggesting a helium star companion or a tidally-disrupted white dwarf companion. As an alternative, we suggest mixing of the central region. We find some support for high initial magnetic fields of strength $10^6$G for SN 2005df, however, $0$G cannot be ruled out because of noise in the spectra combined with low $��_c$.

13 pages, 14 figures, submitted to ApJ

Keywords

Astrophysics - Solar and Stellar Astrophysics, FOS: Physical sciences, Solar and Stellar Astrophysics (astro-ph.SR)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Average
Top 10%
Green
gold