Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Toxicology and Appli...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Toxicology and Applied Pharmacology
Article . 1996 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Potent Peroxisome Proliferators Inhibit β-Oxidation in the Isolated Perfused Rat Liver

Authors: Ronald G. Thurman; Heidi K. Bojes;

Potent Peroxisome Proliferators Inhibit β-Oxidation in the Isolated Perfused Rat Liver

Abstract

It is unknown whether peroxisome proliferators decrease hepatic fatty acid oxidation via uncoupling of respiration or if they inhibit extramitochondrial fatty acyl CoA synthesis. Therefore, the purpose of this study was to examine both processes simultaneously using the isolated perfused liver, a whole cell preparation where enzymes and biochemical processes can be monitored continuously under nearly physiological conditions. Accordingly, ketone body formation (beta-hydroxybutyrate + acetoacetate) from lipid metabolism and oxygen uptake, which is increased by uncoupling agents, were monitored at the same time. 2-Bromooctanoate, a known inhibitor of acyl CoA synthetase, decreased ketone body formation in a dose-dependent manner without altering cellular respiration (half-maximal inhibition, approximately 25 microM) and concomitantly increased protein kinase C nearly fourfold also in a dose-dependent fashion. Ketogenesis was also blocked maximally 50-66% with mono(ethylhexyl)phthalate, 4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio acetic acid (WY-14,643), and nafenopin, potent peroxisome proliferators and tumor promoters. These compounds also increased protein kinase C three- to fourfold without altering oxygen uptake significantly. Thus, lipid metabolism appears to be the prime target of potent peroxisome proliferators most likely on actions via acyl CoA synthetase rather than oxidative phosphorylation. In contrast, weak peroxisome proliferators and tumor promoters, di(ethylhexyl)phthalate and 2-ethylhexanol, did not affect ketogenesis, oxygen consumption, or protein kinase C at similar concentrations. Additionally, octanoate increased ketone body formation in the presence of nafenopin. Because octanoate is metabolized by mitochondrial acyl CoA synthetase independent of carnitine acyltransferase, these results indicate that nafenopin does not inhibit mitochondrial beta-oxidation. Taken together, it is concluded that potent peroxisome proliferators preferentially block ketogenesis without altering cellular respiration in the liver. This phenomenona, which occurs due to inhibition of acyl CoA synthetase, leads to an elevation of free fatty acids that stimulates protein kinase C and promotes cell proliferation.

Related Organizations
Keywords

Male, Receptors, Cytoplasmic and Nuclear, In Vitro Techniques, Microbodies, Antioxidants, Oxidative Phosphorylation, Rats, Inbred F344, Nafenopin, Rats, Perfusion, Pyrimidines, Microsomes, Liver, Animals, Lipid Peroxidation, Caprylates, Antihypertensive Agents, Cell Division, Hypolipidemic Agents, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!