Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Luminescencearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Luminescence
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Luminescence
Article . 2020
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Solvent‐dependent ultrafast optical response of conjugated push–pull chromophores

Authors: Ying Chen; Ran Lu; WenYan Wang; Quan Wang; Xiao‐Chun Chi; Han‐Zhuang Zhang;

Solvent‐dependent ultrafast optical response of conjugated push–pull chromophores

Abstract

AbstractTwo new difluoroboron β‐carbonyl cyclic ketonate complexes C2B and DC2B were investigated using several spectroscopic methods. Relative to the absorption spectra, the fluorescence spectra were more affected by the polarity of the solvent. Also, compound C2B showed a more pronounced Stokes’ shift after solvent polarity increased. Transient absorption measurements then demonstrated the relaxation behaviour of the excited state compound molecule. The kinetic results showed that the excited state C2B in tetrahydrofuran (THF) can return from the intramolecular charge‐transfer (ICT) state and the initial excited state to the ground state. The kinetic relaxation pathway after THF was replaced by dimethyl sulfoxide became single. When the carbazole unit was introduced, DC2B also exhibited an ICT state but there was no significant difference in the excited state relaxation path after solvent polarity was changed. The results indicated that C2B is more susceptible to solvent polarity regulation. The global fit results revealed that an increase in the solvent polarity prolonged the lifetime of the ICT state of compound C2B and had the opposite effect on compound DC2B. These results provide guidance for understanding the relationship between solvent polarity and the designing and synthesizing advanced compound materials.

Related Organizations
Keywords

Boron Compounds, Spectrometry, Fluorescence, Optical Phenomena, Carbazoles, Solvents, Ketones, Furans

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!