<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Significance Metamorphosis is an important biological process by which animals alter their body structures to become sexually mature adults. We discovered that tyramine signaling through the β3-octopamine receptor plays an essential role in producing the steroid hormone ecdysone, which is critical for metamorphosis. Based on our observations, we propose that monoamine signaling acts downstream of a body size checkpoint that allows metamorphosis to occur only when a critical body weight is attained during larval development and nutrients are sufficiently abundant. This work also provides a new perspective on an evolutionarily conserved monoaminergic regulation of steroid hormone production during developmental transitions such as metamorphosis. This study provides a new understanding of how metamorphosis is coordinately regulated by nutritional conditions and developmental timing.
Ecdysone, Metamorphosis, Biological, Tyramine, Thorax, Receptors, Biogenic Amine, Insect Hormones, Larva, Animals, Drosophila, Signal Transduction
Ecdysone, Metamorphosis, Biological, Tyramine, Thorax, Receptors, Biogenic Amine, Insect Hormones, Larva, Animals, Drosophila, Signal Transduction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 53 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |