Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

Definition of the intermediates and mechanism of the anticancer drug bleomycin using nuclear resonance vibrational spectroscopy and related methods

Authors: Lei V, Liu; Caleb B, Bell; Shaun D, Wong; Samuel A, Wilson; Yeonju, Kwak; Marina S, Chow; Jiyong, Zhao; +3 Authors

Definition of the intermediates and mechanism of the anticancer drug bleomycin using nuclear resonance vibrational spectroscopy and related methods

Abstract

Bleomycin (BLM) is a glycopeptide anticancer drug capable of effecting single- and double-strand DNA cleavage. The last detectable intermediate prior to DNA cleavage is a low spin Fe III peroxy level species, termed activated bleomycin (ABLM). DNA strand scission is initiated through the abstraction of the C-4′ hydrogen atom of the deoxyribose sugar unit. Nuclear resonance vibrational spectroscopy (NRVS) aided by extended X-ray absorption fine structure spectroscopy and density functional theory (DFT) calculations are applied to define the natures of Fe III BLM and ABLM as (BLM)Fe III ─OH and (BLM)Fe III ( η 1 ─OOH) species, respectively. The NRVS spectra of Fe III BLM and ABLM are strikingly different because in ABLM the δFe─O─O bending mode mixes with, and energetically splits, the doubly degenerate, intense O─Fe─N ax transaxial bends. DFT calculations of the reaction of ABLM with DNA, based on the species defined by the NRVS data, show that the direct H-atom abstraction by ABLM is thermodynamically favored over other proposed reaction pathways.

Keywords

Models, Molecular, Antibiotics, Antineoplastic, Magnetic Resonance Spectroscopy, Molecular Structure, Deoxyribose, Iron, Ferric Compounds, Vibration, Oxygen, Bleomycin, X-Ray Absorption Spectroscopy, Thermodynamics, Hydrogen

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    64
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
64
Top 10%
Top 10%
Top 10%
bronze