Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Pattern Analysis and Machine Intelligence
Article . 2023 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Temporal Perceiver: A General Architecture for Arbitrary Boundary Detection

Authors: Jing Tan 0002; Yuhong Wang; Gangshan Wu; Limin Wang 0002;

Temporal Perceiver: A General Architecture for Arbitrary Boundary Detection

Abstract

Generic Boundary Detection (GBD) aims at locating the general boundaries that divide videos into semantically coherent and taxonomy-free units, and could serve as an important pre-processing step for long-form video understanding. Previous works often separately handle these different types of generic boundaries with specific designs of deep networks from simple CNN to LSTM. Instead, in this paper, we present Temporal Perceiver, a general architecture with Transformer, offering a unified solution to the detection of arbitrary generic boundaries, ranging from shot-level, event-level, to scene-level GBDs. The core design is to introduce a small set of latent feature queries as anchors to compress the redundant video input into a fixed dimension via cross-attention blocks. Thanks to this fixed number of latent units, it greatly reduces the quadratic complexity of attention operation to a linear form of input frames. Specifically, to explicitly leverage the temporal structure of videos, we construct two types of latent feature queries: boundary queries and context queries, which handle the semantic incoherence and coherence accordingly. Moreover, to guide the learning of latent feature queries, we propose an alignment loss on the cross-attention maps to explicitly encourage the boundary queries to attend on the top boundary candidates. Finally, we present a sparse detection head on the compressed representation, and directly output the final boundary detection results without any post-processing module. We test our Temporal Perceiver on a variety of GBD benchmarks. Our method obtains the state-of-the-art results on all benchmarks with RGB single-stream features: SoccerNet-v2 (81.9% avg-mAP), Kinetics-GEBD (86.0% avg-f1), TAPOS (73.2% avg-f1), MovieScenes (51.9% AP and 53.1% Miou) and MovieNet (53.3% AP and 53.2% Miou), demonstrating the generalization ability of our Temporal Perceiver.

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green