Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Food Bioc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Food Biochemistry
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
License: CC BY
Data sources: PubMed Central
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exploring the role of Xingren on COVID ‐19 based on network pharmacology and molecular docking

Authors: Maoru Wang; Bin Yu; Jisheng Wang; Yu Wang; Libo Liang;

Exploring the role of Xingren on COVID ‐19 based on network pharmacology and molecular docking

Abstract

Since the outbreak of novel Coronavirus Pneumonia 2019 (COVID-19), the role of Almonds (Xingren) in the protection and treatment of COVID-19 is not clear. Network pharmacology and molecular docking were used to explore the potential mechanism and potential key targets of Xingren on COVID-19. A total of nine common targets between them were obtained, and these targets were involved in multiple related processes of GO and KEGG pathway enrichment analysis. Molecular docking showed that licochalcone B has the best binding energy (-9.33 kJ·mol-1 ) to PTGS2. They are maybe the important ingredient and key potential target. Its possible mechanism is to intervene anxiety disorder in the process of disease development, such as regulation of blood pressure, reactive oxygen species metabolic process, leishmaniasis peroxisome, and IL-17 signaling pathway. PRACTICAL APPLICATIONS: Xingren is a traditional Chinese medicine that has been used and developed in China for many years. It contains a variety of active ingredients and also has the functions of relieving cough, relieving asthma, enhancing human immunity, delaying aging, regulating blood lipids, nourishing brain, and improving intelligence. In this article, the possible mechanisms of action and important targets of Xingren in the prevention and treatment of COVID-19 were discussed through network pharmacology and molecular docking. We also found that active ingredient licochalcone B and the potential target PTGS2 are worthy of further research and analysis. At the same time, the study also provides a theoretical basis and reference for the prevention and treatment of COVID-19 and the development of new drugs.

Related Organizations
Keywords

Interleukin-17, Original Articles, Network Pharmacology, COVID-19 Drug Treatment, Molecular Docking Simulation, Chalcones, Cyclooxygenase 2, Humans, Reactive Oxygen Species, Drugs, Chinese Herbal

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Green
hybrid