Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della Ricer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.7712/120121...
Article . 2021 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A DYNAMIC-STIFFNESS APPROACH FOR DAMPED LOCALLY-RESONANT TIMOSHENKO BEAMS

Authors: Russillo A. F.; Failla G.; Pirrotta A.; Fraternali F.;

A DYNAMIC-STIFFNESS APPROACH FOR DAMPED LOCALLY-RESONANT TIMOSHENKO BEAMS

Abstract

A dynamic-stiffness matrix approach is presented for locally-resonant Timoshenko beams with a periodic array of viscously-damped multi-degree-of-freedom resonators. First, an exact dynamic condensation of the resonator degrees of freedom is pursued, expressing the resonator reaction forces in terms of the deflections of the attachment points via pertinent frequency-dependent stiffness terms. On this basis, a direct integration deriving from the theory of generalized functions provides the exact dynamic-stiffness matrix of the beam, whose size is 4 × 4 for any the number of resonators and degrees of freedom within the resonators. The dynamic-stiffness matrix is used to calculate the complex eigenvalues of the beam by a recently introduced contour-integral algorithm, without missing anyone. Further, it provides the transmittance for an insight into the elastic wave attenuation properties of the beam.

Country
Italy
Related Organizations
Keywords

Contour-integral algorithm; Dynamic-stiffness matrix; Local resonance; Timoshenko beam

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!