Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Pflügers Archiv - Eu...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Pflügers Archiv - European Journal of Physiology
Article . 2001 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Dofetilide block involves interactions with open and inactivated states of HERG channels

Authors: Manjula, Weerapura; Terence E, Hébert; Stanley, Nattel;

Dofetilide block involves interactions with open and inactivated states of HERG channels

Abstract

Rapidly activating delayed rectifier current ( IKr) is the key target of class III antiarrhythmic drugs including dofetilide. Due to its complex gating properties, the precise channel state or states that interact with these agents remain poorly defined. We have undertaken a careful analysis of the state dependence of HERG channel block by dofetilide in Xenopus oocytes and Chinese Hamster Ovary (CHO) cells by devising a protocol in which brief sampling pulses were superimposed over a wide range of test potentials. The rate of block onset, maximal steady-state block and IC50 were similar for all test potentials over the activation range, demonstrating that the drug probably interacts with open and/or inactivated but not resting HERG channels with high affinity. Reducing the fraction of inactivated channels at 0 mV by augmenting the external potassium concentration did not alter the sensitivity to dofetilide. In contrast, the S631A and S620T HERG mutations both eliminated inward rectification and reduced dofetilide affinity by approximately 10- and approximately 100-fold respectively. We have also found a novel ultra-slow activation process which occurs in wild type HERG channels at threshold potentials. Overall, our data imply that dofetilide block occurs equally at all voltages positive to the activation threshold, and that the drug interacts with HERG channels in both the open and inactivated states.

Keywords

Sulfonamides, Patch-Clamp Techniques, Potassium Channels, Ether-A-Go-Go Potassium Channels, Membrane Potentials, Xenopus laevis, Potassium Channels, Voltage-Gated, Phenethylamines, Mutagenesis, Site-Directed, Oocytes, Animals, Female, Anti-Arrhythmia Agents, Cation Transport Proteins, Ion Channel Gating

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    58
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
58
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!