
AbstractThe join-calculus is both a name passing calculus and a core language for concurrent and distributed programming. An essential part of its implementation is the compilation of join-patterns. Join-patterns define new channels and all the synchronizations they take part to at the same time. Relying on the experience based on our two implementations, we study the translation of join-patterns into deterministic finite-state automata as well as some related optimizations.
Theoretical Computer Science, Computer Science(all)
Theoretical Computer Science, Computer Science(all)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
