Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neurochemical Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neurochemical Research
Article . 2014 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neurochemical Research
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2014
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sazetidine-A Activates and Desensitizes Native α7 Nicotinic Acetylcholine Receptors

Authors: Brown, Jack L.; Wonnacott, Susan;
APC: 2,200 EUR

Sazetidine-A Activates and Desensitizes Native α7 Nicotinic Acetylcholine Receptors

Abstract

The aim of this study was to investigate the ability of sazetidine-A, a novel partial agonist at α4β2 nicotinic acetylcholine receptors (nAChRs), to affect the function of native α7 nAChRs in SH-SY5Y cells and primary cortical cultures. The α7-selective positive allosteric modulator PNU-120596 was used to reveal receptor activation, measured as an increase in intracellular calcium using fluorescent indicators. In the absence of PNU-120596, sazetidine-A elicited mecamylamine-sensitive increases in fluorescence in SH-SY5Y cells (EC50 4.2 µM) but no responses from primary cortical neurons. In the presence on PNU-120596, an additional response to sazetidine-A was observed in SH-SY5Y cells (EC50 0.4 µM) and robust responses were recorded in 14 % of cortical neurons. These PNU-120596-dependent responses were blocked by methyllycaconitine, consistent with the activation of α7 nAChRs. Preincubtion with sazetidine-A concentration-dependently attenuated subsequent responses to the α7-selective agonist PNU-282987 in SH-SY5Y cells (IC50 476 nM) and cortical cultures. These findings support the ability of sazetidine-A to interact with α7 nAChRs, which may contribute to sazetidine-A's actions in complex physiological systems.

Related Organizations
Keywords

Neurons, Original Paper, Patch-Clamp Techniques, alpha7 Nicotinic Acetylcholine Receptor, Pyridines, Phenylurea Compounds, Isoxazoles, Receptors, Nicotinic, Biochemistry, Cellular and Molecular Neuroscience, Bridged Bicyclo Compounds, Mice, Cell Line, Tumor, Benzamides, Animals, Azetidines, Humans, Calcium

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average
Green
hybrid