Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biology
Article . 2004 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Conserved Docking Motif for CK1 Binding Controls the Nuclear Localization of NFAT1

Authors: Heidi Okamura; Jun Qin; Anjana Rao; David M. Virshup; Carmen García-Rodríguez; Holly M. Martinson;

A Conserved Docking Motif for CK1 Binding Controls the Nuclear Localization of NFAT1

Abstract

In resting cells, the NFAT1 transcription factor is kept inactive in the cytoplasm by phosphorylation on multiple serine residues. These phosphorylated residues are primarily contained within two types of serine-rich motifs, the SRR-1 and SP motifs, which are conserved within the NFAT family. Several different kinases have been proposed to regulate NFAT, but no single candidate displays the specificity required to fully phosphorylate both types of motifs; thus, the identity of the kinase that regulates NFAT activity remains unclear. Here we show that the NFAT1 serine motifs are regulated by distinct kinases that must coordinate to control NFAT1 activation. CK1 phosphorylates only the SRR-1 motif, the primary region required for NFAT1 nuclear import. CK1 exists with NFAT1 in a high-molecular-weight complex in resting T cells but dissociates upon activation. GSK3 does not phosphorylate the SRR-1 region but can target the NFAT1 SP-2 motif, and it synergizes with CK1 to regulate NFAT1 nuclear export. We identify a conserved docking site for CK1 in NFAT proteins and show that mutation of this site disrupts NFAT1-CK1 interaction and causes constitutive nuclear localization of NFAT1. The CK1 docking motif is present in proteins of the Wnt, Hedgehog, and circadian-rhythm pathways, which also integrate the activities of CK1 and GSK3.

Keywords

Binding Sites, NFATC Transcription Factors, Sequence Homology, Amino Acid, Macromolecular Substances, Recombinant Fusion Proteins, Amino Acid Motifs, Molecular Sequence Data, Active Transport, Cell Nucleus, Nuclear Proteins, DNA-Binding Proteins, Glycogen Synthase Kinase 3, Jurkat Cells, Mice, Animals, Humans, Amino Acid Sequence, Casein Kinases, Protein Kinases, Conserved Sequence, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    166
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
166
Top 10%
Top 10%
Top 1%
bronze