<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The γ-secretase complex is required for intramembrane cleavage of several integral membrane proteins, including the Notch receptor, where it generates an active signaling fragment. Four putative γ-secretase components have been identified—presenilin (Psn), nicastrin (Nct), Aph-1, and Pen-2. Here, we use a stepwise coexpression approach to investigate the role of each new component in γ-secretase assembly and activation. Coexpression of all four proteins leads to high level accumulation of mature Psn and increased proteolysis of Notch. Aph-1 and Nct may form a subcomplex that stabilizes the Psn holoprotein at an early step in γ-secretase assembly. Subcomplex levels of Aph-1 are down-regulated by stepwise addition of Psn, suggesting that Aph-1 might not enter the mature complex. In contrast, Pen-2 accumulates proportionally with Psn, and is associated with Psn endoproteolysis during γ-secretase assembly. These results demonstrate that Aph-1 and Pen-2 are essential cofactors for Psn, but that they play different roles in γ-secretase assembly and activation.
Homeodomain Proteins, Membrane Glycoproteins, Receptors, Notch, Macromolecular Substances, Gene Expression Regulation, Developmental, Membrane Proteins, Drosophila melanogaster, Report, Endopeptidases, Mutation, Presenilin-1, Animals, Drosophila Proteins, Amyloid Precursor Protein Secretases, Caenorhabditis elegans Proteins, Signal Transduction
Homeodomain Proteins, Membrane Glycoproteins, Receptors, Notch, Macromolecular Substances, Gene Expression Regulation, Developmental, Membrane Proteins, Drosophila melanogaster, Report, Endopeptidases, Mutation, Presenilin-1, Animals, Drosophila Proteins, Amyloid Precursor Protein Secretases, Caenorhabditis elegans Proteins, Signal Transduction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 135 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |