Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Microbiology and Mol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Microbiology and Molecular Biology Reviews
Article . 1998 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Posttranscriptional Control of Gene Expression in Yeast

Authors: John E.G. McCarthy;

Posttranscriptional Control of Gene Expression in Yeast

Abstract

SUMMARYStudies of the budding yeast Saccharomyces cerevisiae have greatly advanced our understanding of the posttranscriptional steps of eukaryotic gene expression. Given the wide range of experimental tools applicable to S. cerevisiae and the recent determination of its complete genomic sequence, many of the key challenges of the posttranscriptional control field can be tackled particularly effectively by using this organism. This article reviews the current knowledge of the cellular components and mechanisms related to translation and mRNA decay, with the emphasis on the molecular basis for rate control and gene regulation. Recent progress in characterizing translation factors and their protein-protein and RNA-protein interactions has been rapid. Against the background of a growing body of structural information, the review discusses the thermodynamic and kinetic principles that govern the translation process. As in prokaryotic systems, translational initiation is a key point of control. Modulation of the activities of translational initiation factors imposes global regulation in the cell, while structural features of particular 5′ untranslated regions, such as upstream open reading frames and effector binding sites, allow for gene-specific regulation. Recent data have revealed many new details of the molecular mechanisms involved while providing insight into the functional overlaps and molecular networking that are apparently a key feature of evolving cellular systems. An overall picture of the mechanisms governing mRNA decay has only very recently begun to develop. The latest work has revealed new information about the mRNA decay pathways, the components of the mRNA degradation machinery, and the way in which these might relate to the translation apparatus. Overall, major challenges still to be addressed include the task of relating principles of posttranscriptional control to cellular compartmentalization and polysome structure and the role of molecular channelling in these highly complex expression systems.

Related Organizations
Keywords

Gene Expression Regulation, Fungal, Protein Biosynthesis, Molecular Sequence Data, RNA, Fungal, Amino Acid Sequence, RNA, Messenger, Saccharomyces cerevisiae, RNA Processing, Post-Transcriptional

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    208
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
208
Top 10%
Top 1%
Top 1%
bronze